Nat. Conf. on Ecosystem Restoration (July 30, 2013)

Old and New Challenges to Restoring the Upper Mississippi River System

Ken Lubinski

Chief, River Ecology Upper Midwest Environmental Sciences Center

Acknowledgements:

USGS: Brian Ickes, Jennie Sauer, Jeff Houser, Yao Yin, Jim Rogala, Barry Johnson, Brent KnightsUSACE: Chuck Theiling

Early (UMRR-EMP) program accomplishments

Restoration

Monitoring/Science

Increasingly "natural" projects

Graphical Vegetation Database Browser

Query For Percent Frequency

Stratum All Strata				
Species / Life Form Submergent Species				
Year Range 1998 To 2011 To 2011				
Submit Query				

table of pools and the strata they contain

- rapid, intuitive access to data
- studies of limiting factors
- predictive models
- tech assistance now international

The challenges

1. Make a difference at larger scales

2. Become more accountable

After X years (n=26 in this case), how much of a difference has the restoration program made to the ecological condition of the system?

How long until we should start seeing large-scale results?

Challenge 1: Making a difference at larger scales

- Goal-setting
- Linking site restoration to monitoring at river and reach scales

Past goal-setting attempts

frc "H	om the abitat Needs Assessment" (2000)	Aquatic (acre	Terrestrial es x 1000)
	Miss. R. (create)		
	Upper Impounded Reach	42.6	1.0
	Lower Impounded Reach	24.5	3.0
	Open River Reach	25.0	100.0
	Illinois. R. (improve quality)	19.0	
	(estimates will double by 2050 with no	action)	

Other attempts:

UMRCC habitat needs and cost estimates, Pool Plans, NESP ecosystem goals and objectives

Habitat isn't the only component of river ecosystem health.

What is truly feasible?

Making a difference at larger scales

- Goal-setting
- Linking site restoration to monitoring at river and reach scales

Why link site restoration and large-scale monitoring?

The concept is appealing

There are <u>potential</u> reasons to link program pieces at larger scales

1. To detect cumulative project benefits

- 2. To confirm causal relationships & thresholds
- 3. To facilitate use of large-scale measures as decision criteria

Will we be fixing pieces that operate independently, but <u>aren't broken</u>?

<u>Act</u>

Fix/offset common habitat problems

Develop & test cost/effective practices

Improve fishing and hunting opportunities

Without interfering with navigation

Utilize engineering expertise Restoration projects Monitoring reaches

Operative Scale

Intent

<u>Learn</u>

Provide estimates of condition & change over time

Represent broader pool & reach conditions

Evaluate management alternatives

The 2nd challenge: becoming more accountable

How? Get serious about using large scale ecosystem conditions as <u>decision criteria</u>.

So far, projects and "affected" acres have accumulated linearly.

Three possible reach-scale ecosystem responses to restoration effort

Cumulative effort (#'s of projects)

Challenge Summary:

Making a difference at larger scales - Focus on outcomes, not effort

> Link restoration to monitoring without breaking the pieces

Becoming more accountable

- Move toward reach-scale, quantifiable variables

- Restore, learn, decide, repeat

An assumption: entrenched institutions favor the *status quo* and rarely seek new challenges

Yet, these challenges can¹ and should be addressed within the scope of existing resources.

¹ Because the <u>responsibility</u> of meeting these challenges rests mostly with the <u>EMPCC and Analysis Team</u>.

Understanding "zones of Influence" around restoration projects

Black dots are project footprints.

Blue and red borders are "zones of influence".

How big is the zone of influence?How does zone size differ by project type?How might cumulative effects be expressed?"Influence" refers to cause-effect as well as spatial extent.

Digression #1: An unpleasant but valuable mental image -

Planning = Broccoli

We need a new planning approach, professional help, and the commitment to use plans regularly.